NAU SOUTH CAMPUS TRAFFIC STUDY

Transportation & Systems Engineering

Louis Sisto Michael Talamantez Mshary Alkhamees Faris Alradhi

PROJECT OVERVIEW

2

CLIENT: GREG MACE

NAU South Campus

PURPOSE: Mitigate the heavy congestion of vehicular and pedestrian traffic in the 20-25 minute intervals between classes.

Figure 1: NAU Campus

Figure 2: NAU South Campus

Faris

EXISTING CONDITIONS

3

➢ CRASH DATA

- Provided by the NAU
 Police Department
- Mostly Property Damage
 Only Crashes

➢ PEAK HOUR FACTOR

Results are indicative of a very sharp peak for an urban environment ~ consistent with what was expected for a smaller town

Table 1: Crash Data

Crash Data for the Two Intersections										
Year	Pine Knoll/McConnell	Pine Knoll/Huffer	Comprehensive Crash Costs							
2014	4	2	\$ 81,900.00							
2015	6	4	\$ 149,000.00							
2016	4	2	\$ 119,400.00							

Table 2: Peak Hour Volume

Peak Hour Volume								
Intersection	Peak Hour	Volume(veh/hr)	Peak Hour Factor					
Pine Knoll/McConnell	11:00-12:00	1029	0.86					
Pine Knoll/Huffer Lane	3:15-4:15	731	0.78					

Faris

LEVEL OF SERVICES (LOS): INPUT & RESULTS

4

Table 5: (HCS) Intersection of Pine Knoll Dr and McConnell

Highway Capacity Software Summary of Results										
		Eastbound		١	Westbound			Northbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Number of Lanes	0	1	1	0	1	0	1	0	1	
Configuration		т	R		TR		L		R	
Volume (veh/hr)		154	212	84	162		322		95	
Percent Heavy Vehicles	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	
Approach Delay (s/veh)		19.75			15.58			28.77		
Approach LOS		С			С			D		

Table 6: (HCS) Intersection of Pine Knoll Dr and S Huffer Lane

Highway Capacity Software Summary of Results												
		Eastbound		W	estbound		I	Northboun	d	Southbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Configuration		LTR		LT		R		LTR			LTR	
Volume (veh/hr)	25	7	62	134	2	20	62	166	12	18	206	17
Percent Heavy Vehicles	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Approach Delay (s/veh)	10.74			11.42		10.19			9.36			
Approach LOS		В			В		В			А		

Mshary

VEHICLE CLASSIFICATION STUDY

Federal Highway Administration:

Traffic Monitoring Guide

Class Type:

Class 4

Design Vehicle:

- > S-BUS-36
- Conventional School Bus
- > Maximum Turning Path: 39.5 Feet
- Steering Angle: 37.2 Degrees

Path of left overhang front wheel Min. turning 77 radius = 11.86 m[38.9 ft] 0 5 ft 10 ft 2.5 m n⊢ -0 scale Path of right rear wheel Assumed steering angle is 37.2⁰ CTR = Centerline turning radius at front axle · 65 passenger bus

5

Path of front

Figure 4: Vehicle Turn Radius

POTENTIAL DESIGNS

Roundabout

- Reduces the vehicular delay at the intersection
- Increase pedestrian safety
- The total cost estimated to be \$375,000

Pedestrian Bridge

- Reduces vehicular delay at both intersections in the area of Interest
- Eliminates The Variability Of
 Pedestrian Behavior Through
 The Intersection
- The Total Cost Estimated to be \$985,000

Lane Addition

- Will decrease the average
 vehicular delay (not accounting
 for delay caused by pedestrians)
- Does not mitigate pedestrian traffic
- The Total Cost Estimated to be \$1,112,000

Mshary

ANALYSIS OF CRASH DATA

Table 7: Crash Modification Factor (CMF)

CMF Analysis										
Countermeasure	Number of Crashes	CMF	Future Crashes	Crash Costs	Savings	Cost/Benefit				
Lane Addition										
2014	6	0.74	4	\$ 29,600.00	\$ 52,300.00	\$ 556,000.00				
2015	10	0.74	7	\$ 89,300.00	\$ 59,700.00	\$ 370,666.67				
2016	6	0.74	4	\$ 29,600.00	\$ 89,800.00	\$ 556,000.00				
Roundabout										
2014	6	0.38	2	\$ 14,800.00	\$ 67,100.00	\$ 62,500.00				
2015	10	0.38	4	\$ 14,800.00	\$134,200.00	\$ 41,666.67				
2016	6	0.38	2	\$ 14,800.00	\$104,600.00	\$ 62,500.00				
Pedestrian Bridge										
2014	6	0.50	3	\$ 22,200.00	\$ 59,700.00	\$ 366,666.67				
2015	10	0.50	5	\$ 74,500.00	\$ 74,500.00	\$ 220,000.00				
2016	6	0.50	3	\$ 22,200.00	\$ 97,200.00	\$ 366,666.67				

7

Mshary

ROUNDABOUT DESIGN ALTERNATIVE

8

Single Lane Roundabout

- East Approach:
 - Entry width: 19ft
 - Approach Half width: 11 ft
 - Inscribed diameter: 20ft
 - Entry Angle: 33
- West Approach:
 - Entry width: 20ft
 - Approach Half width: 11 ft
 - Inscribed diameter: 26ft
 - Entry Angle: 34
- Pine Knoll:
 - Entry width: 19ft
 - Approach Half width: 11
 - Inscribed diameter: 19ft
 - Entry Angle: 33.6

Figure 5: Proposed Roundabout Design

- Design Vehicle: Class 4 (Bus)
- Inscribed Circle
 Diameter: 110ft
- Circle Inner Speed: 25mph
- Raised Splitter Lanes
- Level Apron
- No pedestrian crossing on the North or West

Michael

LEVEL OF SERVICES (LOS): OUTPUT RESULTS

((D
		1
	K	4

Table 8: Roundabout Delay Under Existing Conditions

Roundabout Design HCS Delay and LOS												
	Eastbound Westbound			Northbound			Southbound					
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Approach Delay (s/veh)		5.64			7.13		6.9					
Approach LOS		A			Α		А					

Table 9: 25 Year Roundabout Design Values

25 Year Design HCS Delay and LOS												
	Eastbound			١	Nestbound	d	٦	Northboun	d	Southbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Approach Delay (s/veh)	7.82			11.61		9.2						
Approach LOS		А		В		А						

BENEFITS OF A ROUNDABOUT DESIGN

10

- Roundabouts reduce the amount of conflict points between vehicle and other users of the intersection by 75%
- Significantly reduce the amount of delay experienced at an intersection per vehicle.
- Reduction in delay causes a time travel savings value(VTTS) of \$24.50 per hour.

Figure 6: Conflict Points[9]

ROUNDABOUT COSTS

11

- The table on the right is an approximation of the construction costs (only) of the roundabout.
- Labor costs would likely add a significant amount to the total construction cost. This is the need for the \$250,000 cost estimation.

Table 10: Itemized Roundabout Costs

ltem	Unit	Unit Price	Quantity	Total
Landscape Removal	Acre	\$ 2,500.00	0.5	\$ 1,250.00
Removal of Concrete Curb and Gutter	ft	\$ 15.00	75	\$ 1,125.00
Sign Removal	each	\$ 200.00	4	\$ 800.00
Roadway Excavation	yd^3	\$ 20.00	400	\$ 8,000.00
Aggregate Base, Class 2	yd^3	\$ 105.00	400	\$ 42,000.00
Asphalt Concrete	ton	\$ 40.00	20	\$ 800.00
Asphalt Rubber	ton	\$ 650.00	6	\$ 3,900.00
Mineral Admixture	ton	\$ 90.00	1	\$ 90.00
Slip Base	each	\$ 250.00	8	\$ 2,000.00
Sign Post	ft	\$ 17.00	10	\$ 170.00
Warning Marker	ft^2	\$ 35.00	3	\$ 105.00
Pavement Markings(White)	ft	\$ 2.00	1848	\$ 3,696.00
Pavement Markings(Yellow)	ft	\$ 2.00	1848	\$ 3,696.00
Paint Bull Nose	each	\$ 175.00	4	\$ 700.00
Concrete Curb(C-05.10)(Type G)	ft	\$ 23.00	350	\$ 8,050.00
Concrete Curb(C-05.10)(Type G)	ft	\$ 27.00	1500	\$ 40,500.00
Concrete Sidewalk Ramp(C-05.30 Type	each	\$2,200.00	4	\$ 8,800.00
Concrete Sidewalk(C-05.20)	ft^2	\$ 12.00	800	\$ 9,600.00
				\$135,282.00

Michael

IMPACTS

12

ECONOMICAL

- Least expensive design
 concept
- Maintenance is typically limited to landscaping
- VTTS is directly beneficial to the user of the intersection.

ENVIRONMENTAL

- Decreased delay results in decreased fuel consumption and increased VTTS for the user of the intersection
- Calming effects on traffic
 Reduction in noise
 pollution

SOCIAL

- Initially, users of roundabouts do not like them, but repeat users are more likely to favor them.
- Public Education
- The rules for roundabouts are typically the opposite of standard traffic behavior

Michael

PEDESTRIAN BRIDGE

Design Criteria:

AASHTO Proposed Guide Specifications for the Design of FRP Pedestrian Bridges

Design Load:

- > 85 psf (Pedestrian Live Load)
- > 10,000 lbs (Standard H-5 Truck)

Delfection:

Not Exceed L/500 (Service Pedestrian Live Load)

Clearance:

14 feet above Existing Roadway

Regulations:

- ADA Standards (Access Ramp)
- Grade (5% 8.3%)

COST OF IMPLEMENTATION

14

<u>Design</u> :	Pedestrian Bridge
Build Year:	2022
Capital Cost:	\$985,524

Factors:

- Construction Costs
- Procurement & Installation of Equipment
- Design
- Project Administration Costs

Table 11: Total Costs for Pedestrian Bridge.

Pedestrain Bridge: Facility Costs								
Construction Cost:	\$4	476 <i>,</i> 865						
Equipment Cost:	\$	920						
Operations & Maintenance (Annually):	\$	583						
Project Contingency								
Administration (Construction) 6%	\$	28,667						
Planning (Construction) 2%	\$	9,556						
Design/Engineering 10%	\$	47,778						
Field Inspection 2%	\$	9,556						
Total Build Year Capital Cost:	\$9	985,524						

ACCOMODATIONS

15

Figure 8: Proposed bridge at Pine Knoll Drive & Huffer Lane intersection.

Pedestrian Bridge and Parking Lots

(P61 and P47 Redesign)

Design Criteria:

- City of Flagstaff Division 10-50.80
 Parking Standards
- > One-Way Drive Aisle
- Parking Stalls Angle: 45 Degrees

I M P A C T A S S E S S M E N T

16

ECONOMIC ANALYSIS

- Annual Operations and Maintenance is \$593
- In a 2009 study, relationship between walking & real estate value, increase value of \$700-\$3,000 for every one-point increase in Walk Score (PedBikeInfo)
- The 2012 Benchmarking Report on Bicycling and Walking in the U.S. found that bicycling and walking projects create 11-14 jobs per \$1 million spent, compared to just 7 jobs created per \$1 million spent on highway projects.

ENVIRONMENTAL/SAFETY

- Annual Decrease in Auto-Use
 (Urban) area is \$23
- Respects NAU's environmental issues of topographic characteristics and preserving the vegetation.

SOCIAL/FEASIBLE

- Provides Mobility
- Alleviates the traffic congestion for both pedestrian and vehicular conflicts.
- Provides access for bicyclists

GANTT CHART

PROJECTED HOURS

Table 12. Projected Total Hours vs Actual Hours.

Projected Hours										
Task	Senior Engineer	Project Engineer	Engineer in Training	Intern	Total Hours	Actual Hours				
Task 1: Field Evaluation										
1.1 Analysis of Existing Data	10	20	35	35	100	70				
Task 2: Mapping and Surveys										
2.1 Establish Survey Control	2	8	8	8						
2.2 Topographic Surveys	2	8	32	32	100	25				
Task 3: Site Characterization										
3.1 Traffic Impact Analysis	Total Sum:	28	66	131						
3.1.1 Occupancy Data	3	8	25	35						
3.1.2 Volume Analysis	3	8	16	35						
3.1.3 Delay Analysis	2	8	15	35						
3.1.4 Vehicle Classification Study	1	4	10	26	234	207				
Task 4: Design										
4.1 Geometric Study	3	5	20	20						
4.2 Environmental	2	8	15	16						
4.3 Social	2	6	15	16						
4.4 Economical	2	8	20	8	166	171				
				Total	600	473				

18

ENGINEERING SERVICES

Table 13. Project Personnel Position & Qualifications.

Positions	Qualifications
Senior Engineer	Transportation Specialty
Project Engineer	Traffic & Systems Specialty
Engineer In Training (E.I.T)	Traffic Systems Specialty
Intern	Traffic Data Collector Specialty

Table 14. Engineering Services for Project Personnel.

			Ba	se Pay Rate	Benefits of Base	Ac	tual Pay	Bil	ling Rate	
Personnel	Classification	Hours		(\$/Hour)	Pay Rate (\$)	(9	S/Hour)	(9	S/Hour)	Cost
	Senior Engineer	34	\$	120.00	50%	\$	185.00	\$	220.00	\$ 7,480.00
	Project Engineer	79	\$	100.00	20.00%	\$	133.00	\$	160.00	\$12,640.00
	Engineer In Training (E.I.T)	172	\$	50.00	25.00%	\$	95.00	\$	140.00	\$24,080.00
	Intern	188	\$	25.00	30.00%	\$	83.00	\$	110.00	\$20,680.00
Total:										\$64,880.00

Faris

R E F E R E N C E S

20

[1] L. Sisto, NAU Traffic Study. 2017.

[2] Northern Arizona University, CIVIL AND ENVIRONMENTAL ENGINEERING. 2017.

[3] United States Department of Transportation - Federal Highway Administration, "Chapter 4C - MUTCD 2009 Edition - FHWA", Mutcd.fhwa.dot.gov, 2017. [Online]. Available: http://mutcd.fhwa.dot.gov/htm/2009/part4/part4c.htm. [Accessed: 30- Jan- 2017].

[4] "FHWA - MUTCD - 2003 Edition Revision 1 Chapter 4C". Mutcd.fhwa.dot.gov. N.p., 2017. Web. 29 Jan. 2017.

[5] "Comparison of Turning Movement Count Data Collection Methods for a Signal Optimization Study," in Mio Vision, 2011. [Online]. Available: http://miovision.com/wp-content/uploads/URS_Whitepaper_May2011.pdf.

[6] M. Kyte and T. Urbanik, Traffic signal systems operations and design: An activity-based learning approach, First Edition ed. 2012.

[7] Manual on Uniform Traffic Studies, "Intersection Turning Movement Counts", http://mutcd.fhwa.dot.gov/, 2014. [Online]. Available:

http://mutcd.fhwa.dot.gov/htm/2009r1r2/part4/part4_toc.htm. [Accessed: 31- Jan- 2017].

[8] U.S. Department of Transportation Federal Highway Administration, "Part 4 Highway Traffic Signals", 2009. [Online]. Available:

http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf. [Accessed: 01- Feb- 2017].

[9] M. Mamlouk, Ph.D., P.E., "Effect of Traffic Roundabouts on Safety in Arizona", National Transportation Center at Maryland (NTC@Maryland), Maryland, 2016.

[10] Federal Highway Administration Office of Safety, "Intersection Safety Roundabouts - Safety | Federal Highway Administration", Safety.fhwa.dot.gov, 2017. [Online]. Available: http://safety.fhwa.dot.gov/intersection/innovative/roundabouts/fhwasa10006/. [Accessed: 01- Feb- 2017].

[11] Google Images, Aerial view of Northern Arizona University campus. 2017.

[12] 2017 Autodesk Inc., Civil 3D 2017 Imperial. 2017.

[13] American Association of State Highway and Transportation Officials, A policy on geometric design of highways and streets, 2004, 5th ed. Washington: American Association of State Highway and Transportation Officials, 2004.

[14] Northern Arizona University, "2015 NAU Landscape Master Plan", www.nau.edu, 2017. [Online]. Available:

https://nau.edu/uploadedFiles/Administrative/Finance_and_Administration/Facility_Services/Documents/DP_Contract/2015%20Landscape%20Masterplan%20Final.pdf. [Accessed: 01- Feb- 2017].

[15] National Oceanic and Atmospheric Administration, "What is LIDAR?", Oceanservice.noaa.gov, 2017. [Online]. Available: https://oceanservice.noaa.gov/facts/lidar.html. [Accessed: 27- Oct- 2017].